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FNATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM NO. 962

RECENT WORK ON AIRFOIL THEORY

By L. Prandtl

I should like ian the followirg to report briefly oxn
several papers which have apneared in Gottinfen during the
last three years.

I, Ia the computational treatment of the 1lifting eur-
face, progress has boen made by starting out - not from a
bound vortox distribution on the surface with the assoclat-
ed trailing vortex ghset - but from the acceloraition vector
field in the neighborhocd of the surface (reference 1).

)\ |
Sinco the acceleration vector Ei' according to the ZBuler
equation, is equal to -~ % grad p and the lottor expres-—

8lon for the case of homogernelty of the mecium, with com-
Pressibllity considered. can be vritton equnl to =~ grad

do
Jr 7?. the acceleratior vector possesses a pntorntial o,

for which there is obtained, by an integration of the Euler
equatlion: )

q’= f\t) - d;? ) (1)

For the stationary state, and niso for tho nonstatiornary
cage, 1f the flow at iafinlty 1s froe from disturbances, we
havo in edditior, f(ﬁ) = constant. Thus there exlate a
very simple rolation betwcon the pressure fileld ond the
“acceleration notential." Since the pressure is discontin-
uous only at tte lifting surface and 1s contlnuous overy-
where else, the same nmust hold true for the acceleration
potentianl.

II. Whero tho "linearizod" thoory is enployed (dis-
turbance velocitios evorywhere emall as compared with tho
flight velocity V), as is custonmary in the troatment of
airfolls, we have:

-"Ueber neuere Arbsiten zur Theorle der tragenden Flache,®
From-'Proceedings of the Fifth Interaational Congress
of Applied Mechanlcs, Qambridgs, Mass,, Sept. 1938,
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¥ 9 X
_— = Eq- — (2)
dat ot 3x

or, substituting the veloclty potential '®, and tho accel-
eration votential :

2

grad @ = 3%

grad O + V gi (grnd O)

from which, interchanging differentiation and integration,

ad ad
= —= + 3
® = 5% v - (3)
In tho statlonary case %% = 0. I% is then possiblo to ob-

tain ¢ from @ Yoy a simple quadraturo:

X

o(x, ¥, z) = %/ o(xt, ¥, z) ax! (&)

But also in the gonerrl case, ¢ car bo comdputed for 3Iiven
e (x, ¥, 2, t) Dbr 2n integration of (3). It is nocessnry

to intezrnte the acceloration potentials icpressed or oack

flulid particle:

5 (x, ¥, =, %) = %lj[‘¢ (x'. r, z, t - x;x’) dx!' (4a)

The shano of tho 1lifting gurface 2z =z (x, ¥, t) can De ob-
tained from the verticnl (downwash) velocitr w = 39/az, fronm

the condition gi =X for the stationary case, or from

v
-} 1l 9z w
—_— = 22 = O - _
3x © T 3t 7 for the nonstationary case b a second quad
rature of the samo type. For the nonstationarr case there
is obtained:

X

='1 1] x—x') L § (1" -E
z vfw(\x.y,o,t-vv dx! + F(r, ¢ ~ F
o)
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The arbitrary function F takes care of.an arbitrarry lift-
ing above the =x,y plane of the wing leading edge, and
llkewlise of an arbitrary vertical motion of the latter.

The vortex sheet does not appear in the above formula-
tion but, of course, exists as is readily seen from (4) or
(4a); 1f consideration is Iiven to the fact that ¢ 1isa
discontinuous at the alrfoll and hence in the ahbove inte-—
gral expressions, these discontinuities also show up behind
the girfoll.

- cﬁoqpvegﬂiﬁfﬁ;

III. In our coanslderations thus far, the comkinutty
has not been taken into account. In the linearized theory,
i1t follows from equation (3) that for reasons of continuity
the same differential equation that nmust be satisfied by o,
nust also hold for . For the incompressible medium, we
thus heve, sinply: ’

Ap=20 (5)

For the conpressiltile medium we have in the stationary case,
if the above linearization is again applied,

- aq? 3y _ 5
(1 —g) axa ‘|'aza o ( a-)

where ¢ 1g the speed of sound.

With the aid of (5) or (5a), the solution can now be
built up by the "doudlet distridpution” principle known in
the electrical theory, A source votential @ can first

be obtalned by distridbuting sources proportional to the in-
tenslty of the desired ‘pressure discontinuilty dt the air-
foil. or at the neighdboring portion of the x,y vlane where,
for each source at a point x', y', O, _there 1s to be sub-
stituted the singular sclution corresponding to differen=-

tial equation (5) or-(5a): thus, in- the incompressible case,
the solution const/r, where .

——

= 4[11 - 1'35 + (y - F'Si +'za

The potential of the source didtribution on the aplt sur-~
face then becomes

Q (x' yl) ax!? dy' -
°Q=ﬁ 4 7r (6)
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where Q is the source intensity.

To obtaln the velocity potential ¢, 1t is necessary
to pags from the source to tke dipole, which can be done

by

¢=Ea.;i°. (7)

IV. Unfortunately, in many anplications of the above
equations, difficulties ariee in carryirg out the integra-
tions, so that 1t is neceaxsary to proceed by the converse
nethod, nanely, to find bourdaries of the 1lifting surface,
for which computed source notentlels are clready available.
An arbitrary source dlstridution can then dbe dullt up in
the form of a series of such snurce potentlals.

In the incompressibleo cass, tkhe procedure has actually
been applied for the airfoil with circular plan form. The
very conplete solution was obtained by W. Kinnor (reforence
2), who applies olliptic coordinates so taat 1N is con-
stant on confocal ellipsolds of revolution, nnd u 1s con-
stant or tae corresmonding confocal hyperboloids (see fig.
1), ¢ deroting the agi-utk. In these coordinates, the
equation AP = 0 1g satisfiod for all

2= Po() qo(4M) 3 P =
P, = P b Qn(iﬂ cos nd, where . ond Qn

denote, rospoctively, tho snherical harmonics (ascociated
Legendre functions) of the first and second kind. If n + n

el
is odd, ¢i has a discontinuitr of a typo -usefyl for our

purpose in the =x, ¥y plane withln tho circle.

With the above functions which tend to zero on the
boundary of the circle, and hence glve finite velocitles
taoroc, 1t is poseible to treat cases with lzpact~free eon-—
trance of the flow dbut not, for oxarple, tha case of the
flat, clrcular disk set at an angle to the flow direction -~
for which case, infinlte volocitles arlese at the leading
edge. For this purpose it 1s nocessary tn enploy additional

speclnrl functions Pps which are obtalned fron ¢§+1 by a
sultadle differentiatlion process. We have

g 0/8 .
cpn = -';E—J:—-F (J—:—Jﬁ-a'> co8 n¢

1
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The @, functions dcconc infinite ovor the entire boundary

of the circle and thérefore do not satisfy the flow condi-
tion at the trailing edge where, according to this condi~
tion, the disturbance veloecity nust remain finite. It is

possible, however, from the infinitely.nany functions
n
wn and Py to find such a linear combination that, first,

the vertical vecloecity w 1s constant in the interior of
the circle and, secondly, that the contridbutions at the
trailing edge which beconme infinite, balance each other, as
is possible with the Fourier series. 3By a conbination of
the solution for tle flat eircular disk with the previous
solutions, the angle-of-attack variation of any cambered
circular surface may also be %reated.

The results of this theory have been checked in the
wind tuannel for 1lift, drag, and pressure distridbution by
M. Hansen, for flat circular plates, spherical segments, and
an S—-canmbered surface with fixed center of pressure. The
theoretical drag Wi iae, according to the Munk stagger the-

oren, identical with that of the loaded line. The integral
of the pressure distribution over the loaded surface, arow-
ever, Sives a greater drag Wg which, on ‘adding the suc-~
tion force at the leading edge, reduces to the value of Wp.
Since at the ed3es of thin Plates the suction force cannct
actually be fully developed, the value of the true drag
iics between Wy and Wg, 1lying nearer the one or the

other wvalue, according to the degree of rounding of the
edge. The surface with fixed center of pressure (fig. 2)
has been so designed by Kinner thnt, at sone anglec of at-
tack the flow at the entire leading edse is without impact.
At this angle of attack, therefore, Wg and Wy a3zree.

-The entire theory holds only for vanishingly small an-
3les..of attack. Deviations of increasing nagnitude are
therefore to be expected with increasing angle of attack.
These appear clearly in the pressure distribution and, nat-
urally, also in the values of the 1lift and drage. If all
the circumstances nmentioned are taken into account and con-
sideration is also g£iven to the fact that actually the test
surfaces can only bo desizned with finite thickness, where-
as the theory assumes infianitely thin airfoils, the agree—
nent of the results given in figures 3 to 5 may be rogarded
as satisfactory,

V. An investization in vwhich the prodblem for the air-
foil with elliptic plan form is to be solved with the aid
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of ellipsoldal .harmonic functions, 1s now being conducted
and likewlise, a, conputation on the nonstatinnary problem of
.the vertically flepping circular éisk, In the first »rob-
len, the lack of certain tables of functions led to diffi-
culties, while in the second tho computetion appears to
proceod snecothly, at least to a first approximation for
snall frequencies.

The s tationary solution for the rectargular airfoll
is naturally also of inroritance. This problen has previ-
ously been investizated by H. Blenk {(reference 3) by a dif-
ferent nethod which, hcwever, 1is azplicedle only to lar3e
aspect-ratio wiﬁqe'(snnll wing ckord), for which in nost
epplications EHe'loadéq- ine thecry 1s found to be .puffl-
clent. " It would therefore ‘ve of consicderabvle interest to
obtain a theory for the rectanzular airfoil cof small aspect
ratio, Unfortiunately, however, it appears .that the ex-
pressions in equations (6) and (7) 3ive rise to ipsurnount-
eble inteiration difficultles. The author has therefors.
directed, a computation t2 be nmade which is based on the
principlés.of the old alrfeil theory ard nckes use of a
large nunmber of loaded lines lyirg one behind the other.
The case of four such loaded lines Wwas first conputed, the
1ift distribution of each of these lines beir3 jiven by a
three—tornm expression ard the kinematic conditior dz/dx =
w/v being satisfled for discrete points beitweer the lines.
A gide investigatlion showed that the accuracy of the conmpu-—
tation becomnes narticularly good if the lires are each lo-
cated at 1/4 chord of the surface sirips, 2nto which the
loaded surface is divided, and the neolrts at which the kin-
enatic condition is satisfied are chosen at 3/4 depth of
the strips. Our coworker, K. Wiesghardt, conputed the square
plate as o numorical examdle, and fourd that tho distribu-
tion 4id not deviate mucih from the elliptic on axny of the
loaded lines. On tho basis of this result nnd on tho as-

.- sunption that the smanwise 1ift distridbution was accurante-

ly elliptigc, he also treated tho prodlen for ‘an infinite
nunbor of loaded linos, where it was now required tiat ‘the
kinenatic condition w = const, ©bo satlsfled in the centor
goction only. For tho chordwise 11ft édistribution, which is
represented by the velocity disoontinuity W(x). an 1nte—

. qral equation was now obtained nanoély,

f*-) S | A
{(xxf-: ( *)"'- Y(x) ax =
—1

J x -x)
2n AV gin o
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for all x' vetwecen' +1 and.=l,. A being tho nspect ratio

"=bft,. B . the .01liptic intogral. Tho solutién of this in-

tegral o uation was Dosslble only by nunherical nathods.
For vYi{x an expression nade up of four "Birnbaun fide-
tione" was chosen and the intogral equation satisfled at
four polnts, The required guadratures had to be carried

out numerically. This computation gave for the various

espect ratios the pressure distridbutions at the center sec~
tion shown in figure 6. The asreement of the 1lifts deter~
mlined from these pressure distributions with the test re-
silte was quite satiafactory. particularly at the small as~
pect ratios.

¥I. With compressiblility taken into a&count and for
subsonlc speeds, the analogy already Iiven by the author.
(reforonce 4) nay be directly applied to the preceding re-
sults obtalnod for tho inconpressibleo flow. It 18 neces-
sary to write in fofnula (6), instead of the provious value
of v, the wvalue

J/(;,- z')a + (} - %;) (ﬁy - y'jﬁ + za)

hence the spaco filled with the compressidle flow con be
set to corresmond with an affine space filled with a corre-—
sponding lncompressible flow by reducing all dimenslons 1in
the direction of the =x axls; for example, in the ratilo

1l - Va/ca. while .tho dinensions in the y and "z direc—

tions remain unchenzod (Prandtl-Glauort rule).

The ce.se of suporsonlc velocity was treatod in detaill
by H. Schlichting (reforonce 5) by the ndw méthods. It was
heore possldle to solve completely tne case of the flat rec—
tangular plate - with tho restrietion, howover, that tho
disturbance regions which gpread out at both side edges un-—
der the Mach angle dn not overlap.on the surfaco. The coa-
sidorations which have led to formula (6) can here bo ap-
plied again vy aotting in the formula

4/(x - x’) (%3 - 1) (¥ - y') + za

AT

The values are real only within a doublo cone with the vor-
tex at x', y', 0, while outside they are imaginary. Tho
Physical sense requlires, howover, that Q(x!, ¥!) should
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contribute onlr in the after cone, while 1n the forward
cone and in the outside region 1/r nusft be set identical-
ly equal to zoro. In order that the forward comne should
drop out, it 18 necessary to add a factor 2 to the after
cOoNna,

The supeorsonic problems are sinpler than the lncon=-
prossible flow and subsnnic problems, ir that nt tho lead-
ing edges no flow arises with infinite veolocity (and hence
no suction force); also, at the traoiling edges no pressure
difference npproachinq zoro is required. Practlical partial,
solutions even with the simnlest integral functlons are
therefore obtained for tke distribution of tie 11ft density,.
Thug Schlichting, for exarple, has computed the velocity
flelds Tor the uniformly loaded roectanzular, triangular,
and trapezoldnrl wings. The %rapezoidal wlng consilitutes on
innortant preliminary work for the theory of the flat rec-
tangular plate set at angle o to the flow dlirection. 1In
thls case the following situantion is obteined (fig. 7).

In a trapezold ABFE, +hoge sides AE ond BF are in-
clined at the Mach anglc B, the 1ift denslity 1s constart,

being equal approxinmately to 4 o ten B pVa/2 - (whore the
Mach angle o is ziven by s8in a = ¢/V). Toward the side
edges the drop takes mlace in such a nanner that nlong each
straight line inclired at an angle @, for exanple, B3BG,
the 1ift density is constant., The -entire 1ift distributlon
can therefore bde dullt up dy » suverpositior of o large
nunber of unifornly loaded trapszoidal wings wlth varlous
angles ®. In the 1linlt thie leads to ar 1izntesgral equation
which - By ~ substitution fourd by I. Lotz - can finally be
Brougzht to the following form: Let ¢ = tnn @/tan o, and

f(94) ©ve the 1ift density neasured at tho angle @ ia the
t;apezoid-shuped center field. Tren

6=1
F(9) + %,][‘ F1(6) F(6,6) 46 =
with 6=o0 '
4'=9
F(9,0) N/l—ﬂ'a as’
8'(s' - @)
¥ =i

The intesgral oquation is to be solved for thc boundary con-
ditiors £(4) =0 for ¢ =0 and f£(9) =1 for 4 =1,
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The solution has been earried out nurorically by Mias I.
""Lotz ond J+ Pretsch.in referenco 5. Fizure 7 <lives the re-
sults of the conputation, -

SUMMARY

The basic ldeas of a new method for treatirg tho prob-
Ien of the alrfoll are presentod, and a review 1s 3iven of
the problens thus far conmputed for irconpressible and super=:
sonlc flows. Test results aro reported for the alrfoll cf
circular plon forn and the results are shcwn to agzrce well
with tho thedory. Ae a supplement, & thoory vased on the
older nothods 1s prosonted for the rectangular wing of
snall aspect ratio,.

Trenslation by S. Reilss,
Notlonal Advisory Conmittooe
for Aerorautics.
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Figure 1.~ Elliptic coordinates

10 | I (I I
8 S\K \ ; !
o 'R | -
Py—Py 6 Lf\ \\
p/2 V2sino ‘\ V\\\\‘\ Ia= o
4 < <
W DI
2 i e S .
_ \\D\t:rzg
0 0.2 0.4 / 0.6 0.8 1.0
x/t

Figure 6.~ Lift distribution in the

center section of large
chord flat rectangular plates, after
K. Wieghardt (A = aspect ratio).
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Figure 5.« Polar curves of flat

circular disks with
rounded leading edge.
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Figure 3.~ Pressure distribution
over flat circular disk
set at an angle(the measured values

are divided by the dynamic pressure
q and tan o ).

on the flat rectangu-
lar plate at supersonic speeds,
after H, Schlichting and I.lots.
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